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DYNAMIC VORTICITY CONDITION: THEORETICAL 
ANALYSIS AND NUMERICAL IMPLEMENTATION 
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The University of Tennessee Space Institute, Tullahoma, TN 37388. U.S. A. 

SUMMARY 

The dynamic boundary conditions for vorticity, derived from the incompressible Navier-Stokes equations, 
are examined from both theoretical and computational points of view. I t  is found that these conditions 
can be either local (Neumann type) or global (Dirichlet type), both containing coupling with the boundary 
pressure, which is the main difficulty in applying vorticity-based methods. An integral formulation is 
presented to analyse the structure of vorticity and pressure solutions, especially the strength of the coupling. 
We find that for high-Reynolds-number flows the coupling is weak and, if necessary, can be effectively 
bypassed by simple iteration. In fact, even a fully decoupled approximation is well applicable for most 
Reynolds numbers of practical interest. The fractional step method turns out to be especially appropriate 
for implementing the decoupled approximation. Both integral and finite difference methods are tested for 
some simple cases with known exact solutions. In the integral approach smoothed heat kernels are used 
to increase the accuracy of numerical quadrature. For the more complicated problem of impulsively started 
flow over a circular cylinder at Re = 9500 the finite difference method is used. The results are compared 
against numerical solutions and fine experiments with good agreement. These numerical experiments 
confirm our thoeretical analysis and show the advantages of the dynamic condition in computing 
high-Reynolds-number flows. 

KEY WORDS Dynamic vorticity condition Theoretical analysis 

1. INTRODUCTION 

The boundary condition for vorticity at a solid surface is encountered in various vorticity-based 
formulations and numerical methods and is considered to be one of the most difficult problems 
in this area. In the past two decades great efforts have been made towards solving the problem; 
for recent reviews see References 1 and 2. In this paper we present a systematic examination of 
the problem from the viewpoint of dynamics rather than kinematics and thereby propose new 
algorithms. Here we briefly examine the root of the problem and introduce the main idea of 
this work. 

Vorticity-based methods solve the vorticity equation under the velocity adherence condition 
on a solid surface. For incompressible flow, such a formulation avoids solving for the pressure 
while keeping the velocity solution divergence-free. However, in implementing these methods, 
one has to infer a boundary condition for vorticity from the velocity adherence, either by applying 
the Biot-Savart law to the solid surface or through a projection theorem.' This implies that in 
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its strict nature the vorticity boundary condition is of global type. Namely, the velocity no-slip 
imposes a kinematic integral constraint on the possible vorticity distribution in the flow domain 
rather than a local condition for the boundary behaviour of vorticity. Such an integral constraint 
cannot be easily included in a local algorithm (finite difference or finite element methods). 
Alternatively, this constraint can be represented as the differential relation between the velocity 
and vorticity, either by the Poisson equation or by a Cauchy-Riemann type of equation (see 
Reference 3 for some relevant theoretical clarification). Then the vorticity and velocity must be 
solved together, which results in a large coupled system of equations. 

On the other hand, in the well-known fractional step approaches such as the integral 
formulation of J.-C. Wu and co-workers, where the kinematics and dynamics are treated 
sequentially in one time step;4 or the vortex methods of Chorin and colleagues, where vorticity 
convection, creation and diffusion are implemented ~equentially,~ the vorticity field near the 
wall is simplified as a vortex sheet and hence the above volume integral constraint is reduced 
to a boundary integral equation or even a local condition for the vortex sheet strength (for the 
latter see also Section 2.3). 

After the first draft of this paper was finished, the present authors became aware of the work of 
Koumoutsakos, Leonard and PCpin6 (abbreviated as KLP below), which analysed the boundary 
conditions for viscous vortex methods. KLP noted that the above-mentioned vortex sheet 
strength can be manipulated so that a Dirichlet or Neumann type of condition can be modelled. 
They further pointed out that the Neumann type is better suited for vortex methods using the par- 
ticle strength exchange (PSE) scheme. From a different approach we shall see that both types 
of condition can exist only in an approximate sense, though the (approximate) Neumann type of 
condition is better. The error of these approximations, however, has never been closely analysed. 

Theoretically, the above difficulty reflects the basic fact that neither the local boundary 
vorticity nor its normal gradient can be rigorously inferred from any kinematic constraint derived 
from the velocity no-slip condition. Thus in the vorticity-based methods it is impossible to obtain 
a strict Dirichlet or Newnann condition for the vorticity equation. In this sense (within kinematics) 
we agree with Gresho’s assertion’ that ‘there are no BCs on the vorticity’. 

Moreover, the vorticity equation is one order higher than the Navier-Stokes equation, so an 
additional compatibility condition is necessary to exclude possible spurious solutions due to 
raising the equation’s order, but again this condition is not derivable within kinematics. 

The above observations motivated us to study a different approach. It can be outlined as 
follows. 

The Navier-Stokes equation, with primitive variables (u, p) as unknowns, naturally matches 
the velocity adherence condition (but special consideration is necessary for the pressure boundary 
condition). By contrast, the vorticity equation, as the one-order-higher equivalent of the 
Navier-Stokes equation, does not. Rather, a natural boundary condition for vorticity should be 
a condition on velocity derivatives instead of velocity, and these derivatives are nothing but the 
fluid particles’ acceleration on the solid wall. Then, as a constraint on the inertial force (per unit 
mass), the acceleration adherence implies a special force balance on the wall through the 
Navier-Stokes equation, which in turn gives the exact expressions for the normal gradient of 
vorticity w and pressure p and have the Newmann conditions for second-order vorticity and 
pressure equations. These dynamic conditions are the subject of the present paper. 

While such a ‘derivative argument’ is well known in other contexts, Anderson’ was the first 
to apply it to the vorticity boundary condition problem. He derived an integral-differential 
equation which determines the boundary value of vorticity. See also the paper of Anderson 
and Reider’ (abbreviated as AR below) for a recent application of this condition. Here, from a 
different point of view, we present a systematic theoretical analysis for both the dynamic vorticity 
boundary conditions and the compatibility conditions. Numerical schemes are then designed 
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based on the theoretical understanding, and checked against exact analytical solutions, highly 
accurate numerical solutions and fine experiments. 

The contents of this paper are arranged as follows. In Section 2 we state the general dynamic 
boundary conditions for o and p and prove that they contain the compatibility conditions as 
well. The detailed structure of solutions of a and p is studied via corresponding dynamic integral 
formulations, which also provides a common theoretical basis for various integral methods. The 
dynamic theory reveals the inherent (a, p) coupling due to the no-slip condition at the solid 
wall and that such coupling makes it generally impossible to prescribe local vorticity boundary 
conditions without knowing the tangential gradient of the boundary pressure. However, with 
the help of the dynamic integral formulation we are able to study the ‘strength’ of the ( q p )  
coupling, which serves as the basis for the design of new finite difference techniques in later 
sections. In particular, we prove that in fractional step methods the strength of the (a, p) coupling 
is reduced to an order of the - 4  power of the Reynolds number. Section 3 presents numerical 
tests against some known exact solutions where the (w, p) coupling is absent. Smoothed heat 
kernels are introduced for integral methods and a finite difference scheme is also tested with 
different treatments of the boundary conditions. Section 4 presents our numerical results for the 
impulsively started flow over a circular cylinder at Re = 9500. A finite difference scheme based 
on the fractional step approach is used. The results reveal that the (a, p) coupling is already so 
weak that, within the second-order discretization error, the fully decoupled approximation can 
predict a flow field almost identical with that obtained with recovered coupling by iteration. 
Some concluding remarks are made in Section 5. 

2. THEORETICAL ANALYSIS 

Consider an incompressible flow of unit density past a solid body. Let the flow domain be I/ 
with boundary aV moving with velocity b. For neatness denote 

(1) 
au 
at 

~ ( u )  = a - vV2u = - + u - V u  - vV2u, 

where a = Du/Dt is the acceleration, such that the Navier-Stokes and continuity equations read 

Y(u) + Vp = 0 and V - u  = 0. (2aM 

The initial and boundary conditions are 

u = u 0  a t t = O  i n I !  (2c) 

n x u = n  x b and n . u = n - b  on a K  ( 2 d d  

Hereafter n is the unit normal vector on the boundary aV pointing out of the fluid. The boundary 
aV may consist of a solid surface B and an infinite boundary aV,. In the latter case we can still 
imagine an ‘adherence’ there, since (2d,e) apply as well, with b being assumed as a uniform 
vector, say U(t). Then, instead of solving problem (2) in terms of primary variables, the 
vorticity-based methods seek the solution of 

v x Y(U) = N ( u ,  0) = 0, a = v x u ,  (3aM 

under constraints (2b-e). As long as this problem is well posed and its solution u obtained, then 
there must be 

Y(u) + vf#J = 0 
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for some 4, which can only be identified as the pressure p. Therefore, if problem (3) and ( 2 k )  
can be solved satisfactorily, there is no need to solve for p simultaneously. However, although 
conditions (2b) and (3b) can be easily ensured by using the streamfunction or Biot-Savart law, 
and (2e) can be satisfied by superposing a potential flow, difficulty arises in implementing (2d) 
directly in terms of o. This motivated us to turn to the dynamic boundary conditions. In this 
section we develop the relevant general theory. 

2.1. Dynamic Neumann conditions for the (a, p )  field 

It is easy to understand that the velocity adherence implies acceleration adherence, i.e. 

n x a, = n x ab and n-a, = n'a,, t 2 0, (4a,b) 

where ab is the wall acceleration and (also below) the subscript B implies the value of fluid 
quantities on the solid surface B. To recover (2d,e), one simply adds an initial velocity 
adherence's9 

n x us = n x b and n-u, = nab, t = 0. (5a,b) 

Note that, as shown by Wu and Wu," in vorticity-based formulations the no-slip condition 
should be and can be imposed at t = 0, even if there is an (idealized) impulsive start from a 
potential flow along with a singular vortex sheet on B, since only the no-slip condition can 
determine the sheet strength (see also Section 2.2 below). However, in the (u, p) formulation there 
is no such need and it is all right to impose no slip only for t > 0 as Gresho'.' stressed, 

Now the local dynamic boundary conditions of the Neumann type for a and p follow from 
applying (2a) to the wall and using (5a,b). It is then immediately clear that once these dynamic 
boundary conditions are used in solving the vorticity field, the (a, p) coupling becomes inevitable. 
Thus, theoretically, one has to solve the (a, p) equations simultaneously. Symbolically, these 
equations and repsective dynamic boundary conditions are 

v x Y(u) = 0, n x Y(u), = -n x Vp,,  (6a,b) 

v z p  = -v  de(u), 

We shall see below that like (7b), equation (6b) can be cast into an explicit formula for the 
boundary oorticity flux a = v(ao/dn),. Equations (4a,b) are necessary in fixing (ao/ih), and 
(ap/an) ,  , respectively. 

Our first concern is whether the solution to this set of equations is also a solution of the 
original equation (2). We have the following. 

Theorem 1 

Assume that u satisfies (6a) and (7a). Then it is the solution of (2a) if either (6b) or (7b) holds. 

Proox From (6a) we have Y(u) + V 4  = 0 for some 4. Substituting this into (7a), we get 

v * V(p - 4) = V24' = 0 (8) 

for 4' = p - 4. However, (6b) implies n x V@ = 0 or 4' = const. on B, so V4' = 0 in K 
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Alternatively, (7b) implies = 0 on B and the same result follows. In both cases (2a) 

Therefore, by introducing acceleration adherence (4a,b), the boundary conditions and compat- 
ibility conditions are merged into one. In this case (6b) and (7b) represent the mathematically 
natural boundary conditons for o and p respectively. They are also physically natural: as shown 
by Wu and Wu'O (see also Section 2.2 below), they precisely reflect the physics of (o, p )  creation 
from the wall. 

holds. 0 

The above theorem can be restated as follows. 

Corollary 1 

only if it satisfies (7a) (or (6a)) simultaneously. 
Let u be a solution of problem (6a,b) (or (7a,b)). Then it is also a solution of (2a) if and 

Proof: The 'only if' part is trivial. To prove the 'if part, for example, from (6a, b) we obtain 
Y(u) = -V4 with n x V($ - p) = 0, but by (7a) we must have Vz($ - p) = 0. The rest of the 
proof is obvious. 0 

As mentioned before, once the velocity field of an incompressible flow has been solved by 
whatever method, Vp can be inferred from the Navier-Stokes equation (2a), but this involves 
an inconvenient computation of Ju/Jt. Solving the second-order pressure equation (7a,b) avoids 
this problem. However, Corollary 1 shows that this approach needs to satisfy the vorticity 
equation as a prerequisite. Similarly, solving the vorticity equation (6a, b) also requires the 
second-order pressure equation. 

Problems (6a,b) and (7a,b), along with initial condition (2c) plus a given initial vorticity 
distribution oo in V at t = 0, constitute a well-posed initial-boundary value problem for the 
coupled (0, p) field. The pressure part of this problem has been extensively studied by Gresho 
and Sani,' ' so we shall mainly concentrate on the vorticity part of the problem. However, the 
(a, p) coupling on B, and hence an interior (a, p )  coupling over the whole flow domain V ,  should 
not be ignored or oversimplified. The effect of this coupling will be analysed theoretically in 
Section 2.2 and numerical aspects of handling this coupling will be presented in Section 2.3. 

We now recover the detailed form of equations and boundary conditions. For incompressible 
flow the (0, p )  equations (6a) and (7a) read 

(9) 
a o  
- + v x L - vvzo = 0, 
at 

L - o x u ,  

vzp, = -v * L, p o  = p + ;lulz. (10) 

The general formula for the boundary vorticity flux a on a solid wall, as well as that for the 
normal pressure gradient, has been given by Wu," Wu et ~ 1 . ' ~  and Wu and Wu." The 
incompressible version reads 
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where I is the unit tensor and ol, = oB - Wt) is the relative vorticity, with Q being the angular 
velocity of the wall. The two-dimensional form of these formulae is well known, while in three 
dimensions there is an extra term (n x V)-(vol, x an) in a, indicating its dependence on W, or 
skin friction zB = vn x oh and the surface c ~ r v a t u r e . ~ ~ * ~ ~ . ~ ~  The physical aspects of u have 
been discussed by Wu and Wu" in depth, where it is also shown that this flux, first introduced 
by Lighthill,14 is the unique correct measure of vorticity source strength on a solid wall. 

2.2. The solution structure of vorticity 

We now examine the detailed structure of formal (a, p) solutions by the standard Green 
function method. This study provides a foundation for the later design of numerical (both integral 
and local) schemes. 

We first concentrate on the vorticity part and assume temporarily that the p ,  distribution is 
known. Let r = x - 6, r = Irl, and 

H ( t  - T )  
G*(x, 6; t ,  T )  = 

[47rv(t - T)]d'2 
(13) 

be the fundamental solution of the heat equation in free space, with H being the step function 
and d the spatial dimensionality. From Green's second identity it follows that 

- 1: dr 4 G*n x L B  dS + 1; dr  1" VG* x L dV. (14) 
B 

Here the subscript zero implies values at T = 0 and u is as given by (1 1). The first volume integral 
represents the effect of initial o distribution and the last two represent the non-linear convection 
effect. The aG*/an term can be eliminated if the Green function with zero normal derivative can 
be found. For simple boundaries such as a flat plate or a circular cylinder this can be achieved 
by using the image method. 

Note that great care is necessary in determining the effect of a moving boundary. Although 
velocity adherence implies acceleration adherence, in the Eulerian description the local and 
convection accelerations of fluid particles on B, (au/dt), and (u * VU),, are not equal to those of 
the solid surface, ab/at and b Vb = R x b respectively. Rather, it can be shown that 

(u * VU), = R x b + (n * b)(& x n). (n b)(ol, x n), 

Moreover, a normal motion of B will generally lead to a time dependence of the normal vector 
n and the flow domain K All these make flow problems with moving walls (e.g. an oscillating 
flap) much more complicated than those with stationary walls. For an analysis of the effect of 
a moving boundary on the time-averaged vorticity flux see Reference 15. For simplicity we 
assume n * b = 0 in the rest of the paper. Thus 

n x L, = - b n - o ,  = - 2 b n - a .  

As shown by Wu and Wu," if in an idealized model the flow is started by either an impulsive 
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pressure gradient and/or an impulsive body motion, the boundary vorticity flux a must contain 
a S-function at  t = 0 and creates an infinitely thin vortex sheet with strength yo: 

(15) 

where uo denotes a suddenly gained flow velocity above the wall at  r = 0 due to the impulsive 
pressure gradient. In (14) this singular behaviour of u can be easily separated from its regular part: 

(16) 

Note that the initial velocity no-slip condition has been implied through (16); without such a 
condition the initial vortex sheet strength yo would be uncertain and have to be prescribed in 
advance. 

To illustrate the implication of (14), we apply it to a unidirectional flow u(y, t )  over a flat plate 
at y = 0. Assume that the fluid and wall are at rest for r .c 0. Take d = 1 and I = y - q in (13) 
and eliminate dG*/dn in (14) by the method of images. Then we readily obtain 

a = n x (b, - uo)S(r) = yoS(t) ,  0- I r 5 0 + ,  

$ dr 
G*u dS = 4 G:yo dS + ji+ dr $ G*u dS. 

B B 

where yo = b, - uo and 

d6 
a(r) = - + P(t) ,  

dt 

with P ( t )  = d p / d x  that can only be a function of t .  In particular, the boundary vorticity is 

For example, the solution of the Stokes first problem (the Rayleigh problem) simply follows 
from letting B = 0 for t 2 0’ in (17a) and (18), yielding the boundary vorticity 

Alternatively, if f i t )  = uo = 0 but 6 = 60 cos r ,  say, (18) yields 

where S(x) and C(x) are Fresnel functions. This is the solution of the generalized Stokes second 
problem including the transient effect, which has been thoroughly studied by Panton.I6 As 
t -P co, equation (20) gives the classical result we(t) = (6 , /Jv)  cos (t + 44).  In Section 3 we shall 
give numerical results for these two typical problems as the first test of the numerical algorithms, 
but the flat plate is replaced by a circular cylinder. 

The special case with 6 = 0 and P = const. in (17) was used by Gresho’ to explain the singular 
behaviour of wB and u at t = 0. He concludes that the vortex sheet ‘is a primary evil when using 
vorticity-based methods’. However, this evil disappears in the integral formulation. 
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Note that in the above example, there is no way to infer the boundary condition in advance 
from kinematic relations only (either theoretically or numerically), since the effect of p is 
‘unknown’ in the kinematics. This statement is also valid for general gradually started flows 
owing to the sudden appearance of afinite pressure gradient. This is another indication that 
vorticity creation can only be fully understood dynamically. 

We now return to (14) and further confine ourselves to the case with b = 0 and hence n *aB = 0 
for neatness. By (1 1) we have 

Here, owing to a consequence of the generalized Stokes theorem 

(n x V) 0 5 dS = 0 (21) 

for any tensor 9 and meaningful operation 0 ,  the first term of G*a has no contribution to its 
surface integral, while the second term is 

-(n x VG*) * (PSI + v o B  x nn) = VG* x np + nVG* - v o B .  

I 
Therefore, since 

np, + n x y o B  = t, 

is the wall stress, it follows from (14) and (16) that for stationary B 

O ( x , t )  = { G;y,dS + jV G;o, dV + [:+ dr { VG* x t,dS + [:dT [“VG* x LdV. (22b) 

We make three remarks on (22). First, although in deriving (22b) we only used the free space 
Green functions (13), the G*do/Jn term is remarkably absent in the surface integral. Thus, along 
with the corresponding pressure equation (25) below, we arrive at an innovative integral 
formulation of a Dirichlet problem with free space Green function. However, this problem is not 
for o alone; rather, it is for the coupled (a, p). Second, since by (13) VG* is along the direction 
of r = x - e, we see that the boundary stress tB at a point 6, E B affects the vorticity field at a 
point x E V only by its components perpendicular to r, through diffusion. Third, applying (22b) 
to B implies a dynamic integral constraint on the boundary vorticity o,, or a global and implicit 
Dirichlet condition for o in V: Unlike the boundary vorticity flux a, however, there exists no 
local equation for 0,. This is factually a mathematical manifestation of the underlying physics:” 
it is the boundary vorticity flux rather than the boundary vorticity that reflects the vorticity 
source directly, and the boundary vorticity itself arises through a time-accumulated effect of the 
flux (see (18)). 

We use the integral formulation here mainly for clarifying the structure of the solution and 
the effect of boundary conditions. In numerical computations integral methods are usually more 
time-consuming than finite difference methods. However, owing to the desire to remove the less 
accurate random walk approach from Chorin’s vortex methods, some authors have recently 
turned to deterministic diffusion algorithms, which are mostly of integral type, since then a 
smooth connection between the Lagrangian convection substep and the Eulerian diffusion 
substep can be achieved (in contrast, to connect a Lagrangian convecton and a finite difference 
diffusion, one has to use the vortex-in-cell technique at the expense of artificial viscosity). For 
example, the PSE method (see References 6 (KLP), 17 and 18 and references cited therein) uses 
an approximate estimation of 0 as the Neumann condition, and to avoid the appearance of oB, 

B B 
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it starts from Green’s first identity instead of ( 1 4 ,  bringing about some error due to the inevitable 
appearance of a volume integral of a Taylor expansion” (also A. Leonard, personal communica- 
tion 1991). On the other hand, Lu and Ross2’ use an integral equation for as to construct the 
Dirichlet condition, and introduce an approximate image Green function (with respect to a flat 
plate) to remove the vorticity flux u. Now, despite the large consumption of computational 
resource inherent in these integral methods, we believe that (14) and (22) provide a foundation 
for deterministic diffusion methods. 

2.3. Boundary pressure and decoupled approximation 

So far we have assumed that p ,  is known in (1 1) or (22). We now turn to the pressure problem 
(lo), (12), which in turn depends on as. This can also be seen clearly from the solution structure 
for p .  Let 

-In r/2n ifd = 2 
ifd = 3 

be the fundamental solution of the Laplace equation in free space. Similarly to (14), from Green’s 
second identity it readily follows that the stagnation pressure po is given by 

p0(x) = - f i G 6  + p o  g) dS + fB Gn-L, dS - VG.L dV, s, 
where 6 is as given by (12). Hence, substituting (12) into (24) and using (21), for a stationary wall 
we find that the counterpart of (22) is 

~ O ( X )  = - VG * t, dS - VG * L d V, (25) I s, 
where t B  is as defined by (22a). It follows from (25) that the component of t,purullel to r = x - 5 
at ke E B has an effect on po at x. Again equation (25) contains a boundary integral equation 
for ps (Po = p on stationary B). 

In principle, pe  or its tangential gradient can be solved simultaneously with the vorticity. 
However, such a global coupling is computationally undesirable, especially for vortex methods, 
since otherwise the methods would lose one of their main advantages, i.e. getting rid of p and 
working in the rotational flow region only. In many (a, u)-based methods a is solved coupled 
with u through the no-slip condition. This certainly avoids solving p, but it only switches the 
coupling from dynamics to kinematics. 

The fractional step (or operator-splitting) methods can partially but greatly reduce the (a, p) 
coupling. In these methods one solves the Euler and Stokes equations 

1 -+uu,*vu,  at +Vp, =o ,  

au2 
- + vp, = V V h ,  
ar 

successively for each time step. Here the scalars p1 and p 2  are necessary to guarantee the 
solenoidal condition (2b). Symbolically, the solution of the Navier-Stokes equation (2a) can be 
written as 

u(At) = S(At)uO = H(At)E(At)uo, 
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where uo is the initial velocity for a time step and S(t), H ( t )  and E(t)  are the solution operators 
for the Navier-Stokes, Stokes and Euler equations respectively. Beale and Greengard, proved 
that this scheme is convergent and first-order-accurate in time (higher-order schemes can be 
designed, e.g. the Strang splitting scheme). It should be mentioned that while u, (solved from 
(26b) with u, as the initial condition) is a valid approximation of the original Navier-Stokes 
equation, it remains unclear whether the same is true for p , .  In fact, equation (26b) shows that 
p ,  satisfies the Laplace equation, whose solution may be qualitatively different from that of (10). 

Corresponding to (26a, b), we have 

so, 
-- + v x L, = 0, 
at 

L,  = 0 ,  x u,, 

as the vorticity convection and diffusion equations. Note that o1 and p ,  are fully decoupled in 
(27a), since only (2e) is required on B. In other words, equations (27a) can be solved without 
invoking p ,  and in this substep there is no need for the vorticity boundary condition (BC) at 
all. Here Lagrangian vortex methods exhibit most of their strength. On the other hand, the 
coupling between w, and p ,  persists in (27b) owing to the no-slip condition, which causes the 
problem of vorticity BCs. Thus, as Gresho2, observed, the Stokes part is most difficult to deal 
with. Now the coupling is revealed by the reduced version of (22) and (25), i.e. 

r 

f p l B  + f B  VG - (np,, + n x V O , ~ )  dS = 0. 

Here the integral in (29) should be understood in the sense of the Cauchy principal value. Note 
that t 2 B  is defined by (22a), so (28) alone is not solvable because of unknown P,~. Equations 
(28) and (29) have to be solved together. 

Two benefits can be seen from (28) and (29). First, the equations are linearly coupled, which 
makes them easier to solve. Second, the velocity does not appear in the coupling, so it can be 
solved separately after o is obtained. 

In the original Chorin-Marsden product formula23 the solution operator is approximated by 

S(At)  = H(At)U)(At)E(At),  

where @(t)  is called the ‘vorticity creation operator’. The effect of this operator is to model 
vorticity creation from a solid wall and hence provide approximate local vorticity BCs for H(t) .  
Usually the modelling does not use the information of pressure directly and so o is decoupled 
from p .  This in fact is also true for the local kinematic vorticity BCs in conventional 
finite-difference methods. 

The modelling of vorticity creation can only be approximate and has very often been based 
on intuition. After the substep of inviscid convection (i.e. solving (27a)) a slip velocity us always 
appears on the solid boundary B. Thus, like (16), there must be a singular vortex sheet with 
strength 

y = n x (b - us). 
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This vortex sheet is then used either to estimate the variation in boundary vorticity (i.e. a Dirichlet 
condition), 

Y 
AWE z - 

h' 

with h being a chosen small normal distance? or to determine the circulation of the discrete 
vortices newly created from 8.' One common choice is to set h = ~ ( K V A ~ ) ,  implying that (19) 
is used to approximate oE everywhere, and some dynamics is thereby introduced. We see that 
this choice is essentially a local unidirectional flow approximation. 

Another way of utilizing y is the dynamic approach that has been applied in some o-based 
 method^.^^'**^^ The following Neumann condition is adopted (the argument leading to this will 
be given later): 

Y a=-. 
At 

Equations (30) and (31) are both decoupled from the pressure and hence are not exact. It should 
be stressed that the reverse reasoning that (30) and (31) imply no explicit coupling between w 
and p is incorrect. 

Both (30) and (31) are often criticized as being inaccurate. However, because of the singularity 
and the 'unusual' way of computing the BCs, the error estimate is not so straightforward. As 
we discussed above, the vorticity creation and diffusion are not really separable because of the 
(o, p) coupling, therefore it is better to look at how accurate the final solution, obtained from 
solving (27b) and (30) or (31), will be. When no exact solution or benchmark numerical solution 
is available, the judgment is difficult to make. However, we may at least infer how well the 
decoupled methods approximate the global (o, p) coupling by checking the velocity no-slip 
condition (since this is the reason for all the trouble). This check cannot be easily done 
analyticallyZ5 and numerical experiments are needed in many cases. 

To gain some insight to the above decoupled approaches, we need to clarify the hidden 
assumptions of the approximate BCs, especially (31). The common argument that leads to (31) 
has been reviewed by Gresho.' A more rational analysis is as follows. 

For the sake of simplicity we consider a two-dimensional flow over a solid surface y = 0, with 
x and y being the tangential and normal directions of the surface respectively. The flow occurs 
at y > 0. For the tangential velocity u at the surface we have 

dU a. 
- + P = - v - - .  
at a Y  

where P 3 dpzE/dx .  Assume initially there is a slip velocity us at y = 0. Integrating (32) from 
zero to At yields 

u(At) - U, = At(5 - P), (33) 

where 
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are the averaged boundary vorticity flux and pressure gradients respectively. Since the diffusion 
substep should make the no-slip condition satisfied at t = At, we have 

Here P is unknown, and by dropping it, we return to the decoupled approximate expression 
(31) for the averaged vorticity flux. Since us represents the initial singularity, P should give the 
'regular part' of CT, like that in (17a), and can be solved from (29). This implies that as Ar -+ 0, 

joAr a dt = -us,  (35) 

from which we may get 6 = - uJAt too; moreover, the derivation seems to suggest that dropping 
P will introduce an O(At) error. We note that KLP obtained (35) via a different approach. First 
they obtained an integral equality (for two-dimensional problems), which in our notation reads 

JoAr 5 a ds = -b  us ds, 

where the closed line integral is along the surface of a solid body. Then follows their key step: 
equation (35) is sufficient for the integral equality to be satisfied. Note that adding a tangential 
gradient of a single-valued scalar function on the right-hand side of (35) would also ensure the 
above equality. Comparing with (32) or (33), the scalar function can be identified as the pressure. 
Therefore the use of (32) avoids such ambiguity and clearly reveals the coupling with the pressure. 

To evaluate the accuracy of the decoupled approximation, it suffices to compare P with uJAt.  
Assume that uo satisfies the no-slip condition, so that after the inviscid convection substep we 
have us = O(At) and hence uJAr = O(1). On the other hand, by (29) and the property of the 
linear operator acting on p z s ,  we have p z s  = O(VO,). For a high-Reynolds-number attached 
boundary layer W, = O(V-' / ' ) ,  so 

Therefore for sufficiently high Re the error due to dropping P should be O(Re-  '/'), which is 
much smaller than uJAt. In (36) we have assumed that W ,  varies smoothly along the body 
surface such that aw,/ax = O(W,). This is not the case for complicated separating flows, since 
near separation as well as the front stagnation point the tangential gradient of oB may be much 
larger. By the triple-deck theory the streamwise length scale near separation is v3/'.  Thus 
dw,/dx - v- ' / '  and P - v ' l 8  % vl/'. In this case dropping P might be locally unsatisfactory, 
although it is still asymptotically small as Re -* co. On the other hand, (36) may still be an 
effective overall estimate, at least for smoothly separated flows; our numerical tests (Section 4.2) 
support this conclusion. 

Similarly, for three-dimensional flows the extra term in a, i.e. (n x V) - ( y o B  x M), is also small 
in general. This term involves the possible sharp curvature of the body surface and the critical 
point behaviour of skin friction lines; see Reference 10 for detailed analysis. 

Overall we conclude that (31) is a good approximation when the Keynolds number of the 
flow is sufficiently high. In any case, owing to ignoring the effect of P ,  there will be a residual 
slip on the boundary even after diffusion. 
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If the assumption of local unidirectional flow is valid (e.g. Ar is small and the surface is smooth, 
etc.) and h is taken to be proportional to J(vAt), then (30) may give results close to those given 
by (31). However, carrying the accuracy analysis of (30) further is difficult, solely because of the 
lack of a local equation for as. Moreover, the arbitrariness of h is an undesirable feature for 
both theo.:tical analysis and numerical computation. Again the error will show up in the form 
of slip. 

We end this section with the following comments. First, the above analysis indeed indicates 
that p 2  is not the pressure solution of the Navier-Stokes equation. In fact, at a high Reynolds 
number p 2  is only a small part of the pressure, associated with diffusion. In contrast, p l ,  the 
driving force for convection, is dominant. Indeed, from (26a) we have pls  = O(1). In fractional 
step schemes the effect of this pressure is already reflected by the O(At)-order us after the 
convection. 

Second, there is a general trend of the coupling strength between o and p. By ‘strength’ we 
mean a quantitative measure of the relative importance of the decoupling. The weaker the 
coupling, the better is the decoupled approximation. Therefore, under the setting of fractional 
step methods we can conveniently define the coupling strength as the ratio between p z  and p l ,  
which leads naturally to the Reynolds number dependence. Our analysis then shows that rhe 
strength of the coupling decreases approximately as Re- ‘I2. The strongest coupling occurs when 
Re 6 1: in a two-dimensional steady Stokes flow the relation between p and v o  is simply that 
of the real and imaginary parts of an analytical function. On the other hand, for the attached 
boundary layer approximation with Re $- 1 the coupling disappears, since p is given. However, 
when separation occurs, the coupling must exist. Note that the decoupled approximation 
discussed here is different from the parabolic boundary layer approximation; when separation 
occurs, the former only becomes less accurate but the latter breaks down owing to the Goldstain 
singularity. 

Third, the slip due to the decoupled approximation does not accumulate during time marching. 
Obviously, any slip left by a diffusion substep will be carried over to the initial condition for 
the diffusion substep in the next time step. Thus, if at the end of a time step the vorticity is 
under- or overcreated, it  will somehow be automatically corrected at the next time step. This 
self-adjusting feature is common to the above decoupled approximations. However, the ability 
of self-adjustment varies among different schemes, as will be shown by the numerical examples 
in the next section. 

3. ELEMENTARY NUMERICAL TESTS 

To justify the general theory developed in Section 2, both integral and finite difference schemes 
were tested, with different boundary conditions for vorticity, against some known exact solutions. 
The selected test cases are (1) an impulsively started rotating circular cylinder, i.e. a generalized 
Stokes first problem with known exact solution,26 and (2) a circular cylinder performing rotatory 
oscillation with an impulsive start, i.e. a generalized Stokes second problem including a transient 
period, whose exact solution is known’* only for the steady state ( t  + m). The unidirectional 
counterparts of these problems have been mentioned in Section 2.2. The flows are rotationally 
symmetric, so the non-linear convection and the coupling with the tangential pressure gradient 
are both absent and the processes are purely diffusive. Because the vorticity creation and dynamic 
vorticity conditions are exclusively governed by diffusion, as indicated by the definition of 
boundary vorticity flux, these pure shearing motions serve our purpose properly. 
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3.1. Integral method and smoothed heat kernel 

the purely diffusive version of (14), 
For the above generalized Stokes first and second problems the basic integral formula is 

o(r) = 2 G;yo dS + 1" G;o, dV + 2 1; dr  G*u dS, (37) 

where 6; is G* plus its image with respect to the cylinder and can be obtained by the same 
method as the Coulombic kernel. Here the flux 0 is exactly known: for the first problem CT = 0 
for t > 0; for the second problem u = db/dt = -sin t (we assume b = cos r so that there is an 
impulsive start). Thus our task was merely to improve the accuracy of numerical integration, 
which was carried out by the repeated use of (37) in each time step At. After the first At the 
volume integral in (37) is no longer zero, which becomes the most time-consuming part. Therefore 
a six-point Gaussian quadrature formula was used for surface integrals, while the volume integral 
was first done by simple summation. 

To perform the integration in a polar co-ordinate system (r, O), a grid with equal size in the 
&direction was used. For the radial direction we set z = log r and divide the z-interval equally 
so that the resulting grid is more clustered near the boundary to help resolve the large vorticity 
gradient there. Owing to symmetry, the main factor influencing the accuracy is Az, the grid size 
in the z-direction. In all test cases presented in this subsection, At = 002 was used. The solution 
for the Stokes first problem is shown in Figure 1 with Re = 1000 and Az = 0.00084. Note that 
the error near the boundary is rather significant, which is mainly due to the inaccurate volume 
integral. 

Two methods can be used to improve the accuracy. One is a higher-order volume integration 
method, such as Gaussian quadrature, and the other is a smoothed kernel method. We chose 
the latter because it is simple to implement. More importantly, it is generally applicable to the 
deterministic diffusion part of a vortex method. Thus we replace G* by a smoothed kernel G:, 

-20 

I 1 

numerical 
analvtical 

Figure I. Solution of generalized Stokes first problem using non-smoothed kernel with Az = 0.00084 
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even though in computations G* did not show any singularity. The technique is borrowed from 
that for the Coulombic kernel G defined by (23), which has been successfully applied in vortex 
methods. A smoothing function can be taken as 

After some straightforward algebra involving special functions, the convolution of $(6) with G* 
gives 

where the index (2) implies that this is a second-order kernel. Beale and Majda” showed that 
proper linear combinations of functions like (38) can be used to construct higher-order smoothed 
Coulombic kernels, and their results can well be applied to heat kernels. For instance, the 
sixth-order smoothing function found by Beale and Majda is 

from which we obtain 

The result for G:‘6’ with Az = 0-0034 and 6 = 2.5Az is shown in Figure 2, where the agreement 
with the exact solution is excellent. 

5 

0 
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L % -10 .- 
.Y r 
3 -15 

-20 
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1 1.05 1 . l  1.15 1.2 1.25 1.3 
R 

Figure 2. Solution of generalized Stokes first problem using sixth-order smoothed kernel with Az = 00034; for time 
sequence see Figure 1 
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Figure 3. Solution of boundary vorticity of Stokes second problem using sixth-order kernel (Az = 00034) and 
non-smoothed kernel (Az = 0@3084) compared with steady state analytical solution 

Both non-smoothed and smoothed kernels were used to compute the Stokes second problem 
with Re = 1000. Figure 3 shows the time variation of boundary vorticity using Gzt6’ with 
S = 2.0Az and the non-smoothed kernel. The grid sizes are the same as above for the two kernels 
respectively. The short-dashed curve is the analytical steady state solution ( t  -+ m) and the solid 
curve is the solution using the smoothed kernel which contains the transient part. The agreement 
in the smoothed kernel case is again very good. However, using direct summation of the 
non-smoothed kernel made the scheme blow up after the first period of oscillation (see dashed 
curve). Although the reason is not totally clear at the moment, we observe that with the smoothed 
kernel the scheme is not only more accurate but also more stable. 

It is evident that if we set d2 = 4vSt, then the smoothed heat kernels will have a simple 
interpretation: the diffusion process is numerically moved forwards by St  (which has no direct 
relation with the computation time step At). In particular, (39) simply becomes 

thus at t = 0 

1 exp( - z) 
4vst ’ GZJ2’ = Gt 

which is regular even for r = 0. This implies that the singular initial condition of vorticity is 
smoothed out. The application of this idea to finite difference schemes was tested numerically 
for the above problems by W U . ~ ’  AR also studied the smoothed initial condition and found 
that it is of crucial importance for the finite difference scheme to have high-order accuracy. 

Finally, a fast summation algorithm for heat kernels, of great value in integral methods, has 
been developed by Greengard and Strain.29 Based on the same principle, KLP successfully 
developed and applied a fast deterministic diffusion scheme for the vortex methods. 
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3.2. Finite diflerence tests 

Because numerical quadratures are time-consuming, a finite difference method was also 
tested for the generalized Stokes problems. Note that since p is decoupled from w owing to 
symmetry, equation (31) is now an exact expression if cr is the averaged flux, but (30) is not. In 
the following we show how to use (31) to obtain a highly accurate scheme and we present a 
comparison among the schemes with different vorticity boundary conditions on the cylinder 
surface. 

In the polar co-ordinate system (r, O), after the transformation z = log r, the vorticity equation 
for the present case reads 

with w = 0 as r + 00. Introducing a streamfunction (which is not necessary here, but serves to 
mimic the general 2D situation), we have 

= ru, a* a'* 
a z 2  aZ -- - = - r2w ,  

where u is the velocity along the &direction. The boundary conditions are 

a* 
az az 

- (0, z )  = 0 (as z + 00). (42b) a* 
- - (0, t )  = 40, t )  = b(t), *(O, t )  = 0, 

In our test equation (41) was discretized using the Crank-Nicolson scheme and all spatial 
derivatives were discretized via central difference. Note that the velocity on the cylinder surface, 
us, is computed by 

where $1 = $(Az). From (43) we can derive the first kinematic boundary condition for o, which 
has been widely used in more general situations. The no-slip condition implies uB = b and hence 

21/11 2b 
w B =  Az2 Az' 

Care is needed regarding (44). Strictly, we should use 

where n + 1 denotes the time step. However, in many cases 

is often used, especially when the solid body is at rest; since its right-hand side contains no 
unknown quantity, it is truly local, whereas (44') is not. This localized version is called BC1 
here. The second boundary condition is the 2D version of (30), BC2. Both BC1 and BC2 are 
Dirichlet conditions and are easy to implement. In fact, under certain conditions these two 
versions are identi~al.~' 



922 J.-2. WU, X.-H. WU. H.-Y. M A  AND J.-M. WU 

The third boundary condition, BC3, is (34) where P is absent. BC3 is of the Neumann type 
and can be discretized in various ways. Meanwhile, there are also several ways to compute ug 
or us. It should be emphasized that one has to choose the methods consistently. This subtle 
issue is being studied and will be reported separately. For the present cases one consistent 
approach is to apply the Crank-Nicolson discretization at the nodal point 0 and take 

a 
w1 - w - I =  -262 - 

V 

into account. This yields 

(45) 
2u 
Az 

(1 + 2 4 4 +  - 210; + = (1 - 240.4 + 220; -2, 

where I = vAt/2Az2. The last terms on the right-hand side of (45) is nothing but what Anderson’ 
proved to be the ‘induced’ vorticity on the boundary by us, though his result was obtained for 
boundary layer flow and from a different approach: 

Thus the interconnection between the dynamic condition and its kinematic counterpart is 
rediscovered. Equation (45) uses the assumption Cr = %a” + 6”’ ’) and is thus O(At’)-accurate, in 
contrast with the O(At)-accuracy of BC1 and BC2.” Furthermore, the dynamic feature as 
reflected by 2 is preserved in (45) but lost in (46), which, as we shall see, makes an important 
difference in the stability of the schemes. 

Figure 4 shows the results for the first Stokes problem (Az = 00067, At = 0.02). From the 
comparison of the variation in wB and us versus time, it is seen that the scheme with BC3 adjusts 
itself quickest to the correct path of solution. In fact, when BC3 was used, after the first time 
step the slip was immediately reduced to lo-’. In contrast, the slip of the other two schemes 
reduced gradually; at the end of 100 time steps it was about Therefore BC3 is the best in 
achieving the no-slip constraint, since physically cr and us are directly and locally related. 
However, the vorticity solution of BC3, especially near the boundary and when t is small, is less 
accurate than the other two, as shown by Figure 4(a). We merely point out here that the method 
of computing slip is only second-order. Thus it cannot give an accurate measure of slip shortly 
after the impulsive start when the vorticity gradient is very large. This observation poses a design 
problem for the schemes that really need to achieve the no-slip condition. One solution is to 
construct higher-order methods.’ 

The numerical oscillation in Figure 4(b) reveals a more serious problem with BC1 and BC2 
than it appears. The oscillations are caused solely by the inconsistencies between kinematic 
boundary conditions and the dynamics. For example, in (44) the boundary condition varies with 
Az instead of At, meaning that oB is the same no matter how large the first time step is. When 
the error is too large, the scheme cannot recover from oscillation and blows up. This situation 
is similar for BC2. However, if h takes the form of CJ(vAt), where C is a constant, the scheme 
is unlikely to break down, because the dynamics are partially reflected (in a rather approximate 
way). However, longer-time oscillations occur before the result converges. The oscillation and 
possible instability problem is most severe for impulsively started flows where the initial slip is 
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Figure 4. Finite difference solutions of Stokes first problem with different numerical boundary conditions for vorticity 
(Az = 00067, At = 002): (a) vorticity distribution at different times (see Figure 1); (b) time variation of slip 

very large. More analysis of the advantages of the Neumann condition over Dirichlet ones are 
given by WU.~'  

The Stokes second problem is also solved by using the above three boundary conditions. The 
comparison is shown in Figure 5. Essentially no new difficulties occur, except that the slip using 
BCl and BC2 increases. In the computation b(t)  = cos t was used intentionally to provide the 
impulsive start, which is our main interest here. One could avoid the transient part of the solution 
by using the steady state result (after one period of rotation) as the initial condition. 

Finally, we note that using (44') is equivalent to imposing u:" = 0. Since using BC3 also 
achieves this condition, the two BCs should give the same solution because of uniqueness. 
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Figure 5. Finite difference solution of Stokes second problem with different numerical boundary conditions for vorticity 
(with same parameters as Figure 4): (a) time variation of boundary vorticity; (b) time variation of slip 

4. IMPULSIVELY STARTED FLOW OVER CIRCULATION CYLINDER 

We now turn to the general situation at high Reynolds numbers, where the coupling with pressure 
appears but the decoupled approximation is feasible. We examine how the decoupled scheme 
works and how to recover the global coupling through an efficient iterative scheme. The results 
are compared with the experiments of Bouard and Coutaneau3' and the highly accurate 
computation of AR. That accurate computation used an explicit fourth-order Runge-Kutta 
scheme in time with fourth-order central difference in space, a fully coupled treatment of the 
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vorticity boundary condition (equivalent to the discretized version of the integral-differential 
equation derived by Anderson’) and a domain decomposition method to accurately reflect the 
infinite boundary conditions. The comparison further confirms our theoretical analysis. 

4.1. Formularion and numerical scheme 

The test case is a circular cylinder with radius R in a cross-flow with freestream speed U .  
The Reynolds number is Re = 2UR/v. Using U and R to non-dimensionalize the vorticity and 
streamfunction equations yields 

where 

(474 z = log(r + a), A = eL(ez - a), B = ae-’, C = 1 - ae-’ 

and a is a strain parameter to make the grid more clustered near the cylinder surface. We use 
the potential flow solution as the initial condition, in which the normal velocity condition is 
imposed by letting $ = 0 at the solid boundary. 

Because of the periodicity in the 8-direciton, equation (47b) can be solved by using FFT in 
the &direction and solving the tridiagonal system of equations (due to central difference 
discretization) in the z-direction. Once $ is known, the velocity is obtained by taking the central 
difference of $. The resulting scheme is fast and second-order-accurate. 

For (47a) we use fractional step methods. Both the first-order scheme 

u” = (H(At)E(At))”uo (48) 

U“ = (H(At/2)E(At)H( At/2))”u0 (49) 

U” = H(At/2)(E(At)H(At))”- ‘E(At)H(At/2)u0. (49‘) 

and the second-order scheme (Strang splitting) 

were tested. Note that (49) is only a little more expensive than (48), as can be seen by rewriting it as 

Thus extra cost occurs only when the output of intermediate values is desired. 
For the convection operator E{At) we combine QUICK upwind differen~ing,~~ which does 

not suffer from second-order numerical diffusion, and second-order TVD Runge-Kutta time 
dis~retization.’~ The scheme was tested against a one-dimensional linear problem (see Reference 
33 for details) and compared with a third-order E N 0  scheme (Figure 6). Although an oscillation 
does appear in the results of QUICK differencing, i t  does not cause serious trouble, because the 
flow is incompressible and viscous. Besides, the oscillation is much less severe than that coming 
from using second-order central difference, and the scheme is much faster than the E N 0  scheme. 

The diffusion operator H(Ar) is the focus of the present study, which by (47) reads 
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Figure 6. Comparison between third-order E N 0  and QUICK schemes using ID linear convection equation 

At the cylinder surface we have 

where u = -a$/dz.  Let 

Integrating (51) gives 

- u n + l  - u n + 1 / 2  

= -p - 5, 
At 

where n + 
yields 

denotes the values after E(At). Imposing the no-slip condition at the (n + 1)th step 

Now we integrate (50) with respect to t and obtain 

where ct, is the time-averaged value of w. Note that by applying (54) at the boundary, we can 
incorporate the dynamic condition (53) into the scheme without approximating 8. Moreover, 
the Crank-Nicolson scheme follows from the approximation 
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Equations (54) and (55)  can be solved efficiently by approximate factorization. We use the 
Peaceman-Rachford AD1 scheme and discretize the spatial derivative, including the boundary 
terms, by central difference. Thus the resulting systems of equations are tridiagonal. To close 
the equations, we need to know and a"". It is evident from the discussion about (54) 
that only 5 is important in the unfactored scheme. Therefore, as long as 6 = (a"+'/* + d'+')/2 
is satisfied, no matter how we choose the two values, the scheme should be consistent. Thus we 
simply set d'+ 1/2  = on l = 8. 

As shown in Section 2, dropping P introduces some error into the solution and the no-slip 
condition is not strictly satisfied. Although the error is generally not large, as an unknown factor 
is it undesirable for designing highly accurate numerical schemes. Thus we introduce an iterative 
method that controls the slip to a desired small level, i.e. we bypass soloing pressure bur retain 
the global (a, p )  coupling by iterarion. If the initial guess is close to the solution, the iteration 
technique is more efficient compared with directly imposing the global coupling. This is the case 
here because of the high Reynolds number. 

The iterative scheme can be naturally derived from (52) and (53). Initially we drop P and get 

For a fully decoupled scheme equation (56) is the boundary condition to use. After the diffusion 
un + 1 .O # b"+' in general. Thus subtracting (56) from ( 5 2 )  gives 

u:+ l S 0  po = - = -~ 
un+ 1.0 - b n +  1 - 

At At 

Substituting this result into (53), we obtain an updated boundary condition 

and hence in general 

Clearly, (57) converges when the no-slip condition is achieved. 
Note that during the iteration only the slip needs to be computed. This feature makes (57) fit 

well in a vortex method that solves velocity via the Biot-Savart integration, because the slip can 
be obtained without solving the whole velocity field. However, for the current finite difference 
method we still have to solve the whole field. Since the Poisson solver is fast and the iteration 
converges fast, as will be seen below, our scheme is still reasonably fast. 

An advantage of the present fractional step method is that we can use At larger than that 
allowed by the CFL number of the explicit convection scheme. Since the convection and diffusion 
are performed in turn and the diffusion scheme is unconditionally stable, we can perform several 
convection substeps with a smaller At that satisfies the CFL condition, and one diffusion step 
with a larger At. Obviously, by doing this, we can save CPU time while getting the same result 
if Ar is not too large to degrade the time accuracy. This is especially useful when a tiny grid 
size has to be used for computing high-Reynolds-number flows. 

As to the far-field boundary condition, in the present computation we impose the potential 
flow solution of $ at r o c ,  which is commonly done in this type of computation. For the vorticity 
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we convect w out of the computational domain by upwind differencing. The value of o at rm 
is then used as the boundary condition for the diffusion substep. 

4.2. Results and discussion 

Both the first- and second-order splitting schemes were used to compute the impulsively 
started flow with Re = 9500. At this Reynolds number the flow exhibits a rich vortex structure 
which makes the computation difficult. In the following results the far-field boundary is taken 
to be rm = 5 unless otherwise stated; a 512 x 301 grid was used, except for Figures 7 and 8 
below where the grid was 256 x 301. The computation was done in double precision on a Sun 
SPARClO workstation. With the 256 x 301 grid it took about 5 CPU seconds for one time step 
without iteration. 

shows me compurea now neld using the first-order splitting and no iteration, 
compared with experiment3' and the computation by Ta Phuoc LOC and B o ~ a r d . ~ ~  The results 
were obtained with a = -0.5, so the grid sizes are A0 = 0.0245 and Az = 0.0073, and we have 

Figure 

(a) 1 - 2.0 (b) t * 2.8 

Figure 7. Comparison of flow structure obtained by present fractional step scheme on a 256 x 301 grid (top; (I = -05, 
r x  = 5, At = 0~0005). flow visualization (middle) and numerical solution simulation of Ta Phuoc Loc and Bouard 

(bottom): (a) r = 2.0; (b) f = 2.8; (c) r = 3.2; (d) f = 4.0 
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Figure 7 (conrinued) 

Ar = 0.0037 adjacent to the wall, which will be denoted by Ar,. The time step is At = 0-005. 
The agreement is good. It needs to be stressed that such comparison is only of qualitative value. 
Later we shall compare the results of wB and the drag coefficient C,, which will give more 
quantitative information about our scheme. In Figure 8 the velocity at the symmetry plane 
behind the cylinder is compared with experiment. The solid curves are the numerical results and 
the symbols experimental data. We note that the wake length of our computation is always 
smaller than that of the experiment3’ as well as Ta Phuoc LOC and Bouard’s results (Figure 7). 
On the other hand, our result agrees well with AR’s fourth-order computation (see Figure 14 
below). We believe that besides the grid size and r ,  effect to be discussed below, the different 
treatment of the initial condition is an important source of the discrepancy with that of Ta 
Phuoc LOC and Bouard. In both the present and AR’s computations a potential flow (with 
modification in the latter case) was used to model the ‘impulsive’ start, while an initial Stokes 
flow with a sudden change in the Reynolds number was used by Ta Phuoc LOC and B ~ u a r d . ~ ~  

The comparison in Figure 7 seems to suggest that the flow is well resolved. Indeed, a 
comparison of wB using the above grid with AR’s fourth-order solution (obtained on a uniform 
grid with A0 = 0-00307, Ar = 0.00195 and At = 0.00033) showed that the attached and smooth 
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Figure 8. Comparison of wake velocity profile between numerical and experimental results (see Figure 7 for parameters) 

separating flows are well resolved with our much larger A8. However, for resolving the more 
complicated separating flow, a smaller A0 is necessary. Thus we reduced A0 to 00123 by 
increasing the grid number in the &direction, n,, to 512 (At was reduced to 0.0025). The results 
of wE with and without iteration are shown in Figure 9. The agreement is good except for the 
extreme values. 

The time variation of the maximum and averaged slip (under the ,!,,-norm) is shown in Figure 
10. To the author’s knowledge, in the literature only Cottet’’ mentioned that in his computation 
the averaged slip is about 2%. I t  is interesting to note that after keeping at a constant level 
(with maximum slip 0.0125%) for some time, the slip rises up. The time of slip rising is about 
the time when the first secondary vortex starts to form. Owing to these small vortices rather 
than the primary large vortex, the boundary vorticity no longer varies smoothly along the 
surface; a large gradient occurs. This can also be seen clearly in Figure 9. Comparing Figure 
9(b) with Figure 10 shows that when t = 2, there are high peaks in the wg distribution (in fact, 
the maximum boundary vorticity occurs at about this time), so that not only wE but also its 
gradient is large. Correspondingly, the slip is larger, about the maximum point in the curve. 
This observation is in qualitative agreement with our previous discussion on the accuracy of 
decoupled schemes. 

There are two ways to further improve the accuracy in wE. First, when there is a high peak 
in wE, the normal gradient near the wall is likely to be very high. Thus reducing Ar near the 
wall will give better resolution. The other way is to use the iteration method so that the slip 
can be further reduced and the global coupling is better satisfied. We need to point out, however, 
that the slip does not directly relate to the accuracy of wg. although vorticity is created by the 
no-slip condition (recall that oE is the space-time-integrated effect of a). 

which 
is below the discretization error. Only two or three iterations were needed for convergence. The 
fast convergence of the iterative scheme is mainly because of the weak coupling as discussed in 
Section 2. The result (Figure 9) is almost identical with the non-iterative one. This indicates that 

We implemented the iterative scheme and let the averaged slip reduce to below 
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Figure 9. Comparison of boundary vorticity obtained by present scheme on a 512 x 301 grid ( u  = -0.5. r ,  = 5. 
Ar = 00025)  and fourth-order scheme of Anderson and Reider 

for the present high-Reynolds-number flow the (0, p) coupling is so weak that the decoupled 
approximation is good enough, at least in the range of the present second-order accuracy. On 
the other hand, the second-order method of computing slip might degrade the effectiveness of 
the iteration. Note that the slip is most influenced by the vorticity distribution near the wall; 
when large gradients are present in that region, the slip could be difficult to compute accurately 
even by the second-order method. To make the iteration more beneficial, therefore, higher-order 
methods might be needed for computing the slip. Examples of these methods, but in different 
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Figure 10. Time variation of maximum and averaged slip velocities (see Figure 9 for parameters) 

contexts, include that by Ta Phuoc LOC and B ~ u a r d , ~ ~  who used a compact fourth-order scheme 
to compute the streamfunction and velocity, and that by AR, who tested a hybrid scheme with 
higher-order computation of both us and oB. 

Now we reduce Ar close to the wall by choosing the strain parameter a = -09  (Ar, = 0.00124) 
and use two different Ats, i.e. 0.001 and 001. The results for og (without iteration) are shown 
in Figure 1 1 .  Comparing with Figure 9, the improvement in the peak values of wB is obvious. 
The influence of At, also shown in the figure, turns out to be small. In fact, we also tested the 
second-order splitting scheme with the same grid and time steps and obtained little improvement. 
It seems that the time accuracy is not crucial in the present early-stage computation. Further- 
more, the time accuracy of the second-order splitting may be deteriorated by the singular initial 
condition for vorticity, as AR observed. 

Figure 12 shows a comparison of the slip variation with different time steps (no iteration). It 
clearly indicates that the residual slip after the diffusion substep is proportional to At. Recall 
that the first estimate of P is just the ratio of this residual slip to At;  therefore B, and hence 
the error introduced by dropping P ,  is independent of At, which is physically correct. This error 
should depend mainly on the Reynolds number as discussed in Section 2.3. Similar At 
independence holds for the performance of the iterative method. Comparing the maximum slip 
in Figure 10 with that obtained with At = 00025 in Figure 12, we see very similar slip variation. 
In fact, our numerical experiments showed that the magnitude of slip has little dependence on 
the grid size. 

In order to further confirm the estimate (36), a group of tests were performed with fixed At 
to check the dependence of the residual slip, and hence P,  on Re. We define the reduction factor 
of the slip by 

where u ; + ' ' ~  and u:+ are the slip values after the convection and diffusion substeps respectively. 
Evidently fR also represents the ratio between p ,  and p 2 ,  or the inverse of the strength of (w, p) 
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coupling. To determine the variation in fR with Re, we define the index of jR as 

I n ( f R J f R , )  1, = 
In(Re,/Re ,) 

According to (36), I, should be about 0-5. To compute I,, we need to compare two flows with 
different Re. This is done carefully by choosing Re,  and Re, close enough (10% difference) so 
that the flows do not differ qualitatively. We use the averaged slip for calculating fR and I,, 
because it reflects the global character of the flow. Table I clearly confirms the predicted value 
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Figure 12. Effect of Ar on maximum slip (see Figure I 1  for parameters of grid) 

of 0.5 expecially as Re becomes higher. I t  also presents the &-norm relative error in toB of the 
decoupled scheme compared with the fully coupled one using iteration. The index of this error, 
I,, is defined similarly to I, and also has a similar trend. Another indication of the strength of 
(0, p) coupling is the number of iterations required to achieve convergence in us. As expected, 
more iterations were needed for lower Re in our tests. A test with Re = 9500 shows that (36) is 
valid for smoothly separated flow, which corresponds to the ‘flat’ part of the averaged slip in 
Figure 10. As the slip rises and the flow becomes more complicated, the estimate becomes invalid 
and the error of decoupling is larger. In  Table 11 we give the errors in boundary vorticity at 
different times. More importantly, we found that both fR and hence the error in cog due to 
decoupling seem to be independent of grid size when the flow is well resolved. This would imply 
that the numerical results will not converge to the exact solutions as the grid refines. Therefore 
the present fractional step decoupled scheme is not suitable for pursuing very-high-resolution 
computations. On the other hand, for fixed precision simulations in practice the method could 
be very useful as long as the decoupling error is lower than the discretization error. For example, 
the largest decoupling error in Table 11 would be well acceptable if the required precision were 
1 %. Amazingly, even at Re = 10, about the lowest Reynolds number of most practical interest, 

Table 1. Results obtained with At  = 0.01 at t = 1. fR is the reduction factor 
of the averaged slip, 1, is its index; E and I ,  are the L,-norm of relative 

decoupling error of boundary vorticity and its index respectively 

Re fR I R  E 1, 

10 1.552 0.359 5.093 x 10-3 - 0.398 
100 4226 0.475 1.992 x - 0.423 

lo00 12.94 0.497 7.104 10-4 - 0.459 
loo00 37.49 0.508 2.659 x - 0.466 
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Table 11. L,-norm of relative decoupling error in boundary vorticity. See legend of Figure 9 for parameters 
of computation 

Time 0.5 1 .o 1.5 2.0 2.5 3.0 

Error 6.200 x 6.171 x 1.773 x 1607 x 1.985 x 1.577 x 

the decoupling error might be considered as still sufficiently small. I t  is not feasible to give 
criterion for whether a decoupled scheme can be used in general, but one can always find this 
out by comparing the decoupled result with the fully coupled one using the efficient iteration 
scheme described above. 

Therefore we summarize that the present decoupled scheme with dynamic condition is capable 
of capturing the fine vortex structures of high-Re flow, while it can also be used for flow with 
Re as low as 10. The accuracy of short-time simulation depends solely on the grid size, especially 
in the near-wall and separation regions. 

In the present computation the boundary vorticity flux cr is directly affected by the accuracy 
of computing the slip, and hence so is the pressure solution, since it is computed by 
integrating the flux. Therefore, again, higher-order methods of computing the slip are 
desirable. 

Our results also clearly indicate the importance of choosing r m .  For rm = 5, although reducing 
ArB leads to better wB (Figure ll), it does not improve pe  significantly and might be even worse 
for separating flow. However, with the same ArB, using rl  = 20 leads to a much better result. 
I t  is interesting to note that the difference in cr due to different rX is much less significant than 
that in p B ,  especially when ArB keeps the same. Figure 13 shows the C, variation. For the 
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Figure 13. Time variation of drag coefficient with different Ar, and r ,  compared with fourth-order result: -. 
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attached flow where friction drag is dominant, smaller ArB makes the result more accurate owing 
to improving wB. When complicated flow separation occurs and a large vortex structure forms 
behind the cylinder, pressure drag is dominant and r4  becomes an important factor in 
determining the accuracy of CD. Note that the result in Figure 13 was not expected to converge, 
because the number of grid points was kept the same although the A r 6  are different. This 
explains the apparent difference between our result and that of AR. 

In Figure 14 we compare the wake velocity on the symmetry plane behind the cylinder with 
the fourth-order solution. The ArB effect is not as significant as in other figures. Note that the 
relatively large error of the result computed with A0 = 00245 shows that the flow is too 
under-resolved. The rr effect is clearly seen again at t = 3. From this figure and the above 
observation we conclude that if only the simplest treatment of the far-field condition like ours 
is to be used, choosing rzi far enough is important even for the early-stage computation of a 
high-Reynolds-number flow. 

Finally, we remark that some apparently different treatments of the vorticity boundary 
condition may in fact be the same. For example, in the method proposed by Hou and W e t t ~ n , ~ ~  
second-order central difference is used to discretize the spatial derivatives. They also used a 
local kinematic boundary condition for vorticity, which is derived from the discretized no-slip 
condition. This leads to nothing but (44’). Since our method of computing the velocity and slip 
is the same as theirs, when the no-slip condition is satisfied (by using iteration) in our scheme, 
the local kinematic boundary condition is recovered. Thus the two treatments of the boundary 
condition become essentially the same (for the present problem). An implication of this 
observation is that the error analysis of Hou and Wetton may be partially adopted for the 
present scheme. Also note that the dynamic boundary condition along with the iteration method 
can be used conveniently in non-fractional step schemes.30 
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5. CONCLUDING REMARKS 

The dynamic boundary condition of the Neumann type for vorticity, derived from the Navier- 
Stokes equation, is the natural choice for the vorticity equation from both mathematical and 
physical points of view. Owing to the existence of a local equation for the condition, it is easier 
to analyse and compute with much less uncertainty. Compared with local approximations of 
kinematic boundary conditions, the pressure can be easily included. 

The integral formulation developed for studying the solution structure of vorticity and pressure 
provides a foundation for deterministic vortex methods and is a perfect way of handling vortex 
sheet singularities that may exist in the initial condition for vorticity on a solid boundary. 

The essential difficulty in applying the dynamic condition is the intrinsic (0, p) coupling on 
the boundary. The fact that when the Reynolds number is high (it can be as low as lo), the 
coupling is weak (about the order of in fractional step methods, is very useful for 
designing numerical schemes. In fact, we demonstrated that a fully decoupled scheme might give 
satisfactory results. Whenever necessary, an efficient iteration may be used to recover the global 
coupling. This method is generally applicable to various vorticity-based schemes and will be 
most efficient when combined with fast integral methods in computing velocity. The extension 
of the dynamic condition to three-dimensional problems is ~traightforward.’~ 

The finite difference schemes tested in the present paper suffer from the low-order accuracy 
of computing the slip. This motivates the construction of higher-order methods. Also, further 
works, such as testing the performance of the dynamic condition in problems with moving 
boundaries, are desired. 
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